Skip down to main content.

NEWS RELEASE

Tuesday, March 25, 2014

NVIDIA Launches World's First High-Speed GPU Interconnect, Helping Pave the Way to Exascale Computing

NVLink Enables Tightly Integrated CPUs and GPUs

SAN JOSE, CA - GTC -- NVIDIA today announced that it plans to integrate a high-speed interconnect, called NVIDIA® NVLink™, into its future GPUs, enabling GPUs and CPUs to share data five to 12 times faster than they can today. This will eliminate a longstanding bottleneck and help pave the way for a new generation of exascale supercomputers that are 50-100 times faster than today's most powerful systems.

NVIDIA NVLink is the world's first high-speed GPU interconnect, helping pave the way to exascale computing.

NVIDIA will add NVLink technology into its Pascal GPU architecture -- expected to be introduced in 2016 -- following this year's new NVIDIA Maxwell compute architecture. The new interconnect was co-developed with IBM, which is incorporating it in future versions of its POWER CPUs.

"NVLink technology unlocks the GPU's full potential by dramatically improving data movement between the CPU and GPU, minimizing the time that the GPU has to wait for data to be processed," said Brian Kelleher, senior vice president of GPU Engineering at NVIDIA.

"NVLink enables fast data exchange between CPU and GPU, thereby improving data throughput through the computing system and overcoming a key bottleneck for accelerated computing today," said Bradley McCredie, vice president and IBM Fellow at IBM. "NVLink makes it easier for developers to modify high-performance and data analytics applications to take advantage of accelerated CPU-GPU systems. We think this technology represents another significant contribution to our OpenPOWER ecosystem."

With NVLink technology tightly coupling IBM POWER CPUs with NVIDIA Tesla® GPUs, the POWER data center ecosystem will be able to fully leverage GPU acceleration for a diverse set of applications, such as high performance computing, data analytics and machine learning.

Advantages Over PCI Express 3.0
Today's GPUs are connected to x86-based CPUs through the PCI Express (PCIe) interface, which limits the GPU's ability to access the CPU memory system and is four- to five-times slower than typical CPU memory systems. PCIe is an even greater bottleneck between the GPU and IBM POWER CPUs, which have more bandwidth than x86 CPUs. As the NVLink interface will match the bandwidth of typical CPU memory systems, it will enable GPUs to access CPU memory at its full bandwidth.

This high-bandwidth interconnect will dramatically improve accelerated software application performance. Because of memory system differences -- GPUs have fast but small memories, and CPUs have large but slow memories -- accelerated computing applications typically move data from the network or disk storage to CPU memory, and then copy the data to GPU memory before it can be crunched by the GPU. With NVLink, the data moves between the CPU memory and GPU memory at much faster speeds, making GPU-accelerated applications run much faster.

Unified Memory Feature
Faster data movement, coupled with another feature known as Unified Memory, will simplify GPU accelerator programming. Unified Memory allows the programmer to treat the CPU and GPU memories as one block of memory. The programmer can operate on the data without worrying about whether it resides in the CPU's or GPU's memory.

Although future NVIDIA GPUs will continue to support PCIe, NVLink technology will be used for connecting GPUs to NVLink-enabled CPUs as well as providing high-bandwidth connections directly between multiple GPUs. Also, despite its very high bandwidth, NVLink is substantially more energy efficient per bit transferred than PCIe.

NVIDIA has designed a module to house GPUs based on the Pascal architecture with NVLink. This new GPU module is one-third the size of the standard PCIe boards used for GPUs today. Connectors at the bottom of the Pascal module enable it to be plugged into the motherboard, improving system design and signal integrity.

NVLink high-speed interconnect will enable the tightly coupled systems that present a path to highly energy-efficient and scalable exascale supercomputers, running at 1,000 petaflops (1 x 1018 floating point operations per second), or 50 to 100 times faster than today's fastest systems.

To Keep Current on NVIDIA:

  • Like NVIDIA on Facebook.
  • Connect with NVIDIA on LinkedIn.
  • Use #GTC14 on Twitter.
  • View NVIDIA videos on YouTube.
  • Keep up with the NVIDIA Blog.
  • Use the Pulse news reader to subscribe to the NVIDIA Daily News feed.

For further information, contact:

George Millington

Tesla and CUDA Products
t: +1 (408) 562 7226
e: gmillington@nvidia.com

About NVIDIA
Since 1993, NVIDIA (NASDAQ: NVDA) has pioneered the art and science of visual computing. The company's technologies are transforming a world of displays into a world of interactive discovery -- for everyone from gamers to scientists, and consumers to enterprise customers. More information at http://nvidianews.nvidia.com and http://blogs.nvidia.com.

Certain statements in this press release including, but not limited to, statements as to: NVIDIA's plans to integrate NVIDIA NVLink into future GPUs; the impact, benefits and performance of NVIDIA NVLink; the planned introduction of Pascal GPU architecture; and IBM's plans to incorporate NVIDIA NVLink into its POWER CPUs are forward-looking statements that are subject to risks and uncertainties that could cause results to be materially different than expectations. Important factors that could cause actual results to differ materially include: global economic conditions; our reliance on third parties to manufacture, assemble, package and test our products; the impact of technological development and competition; development of new products and technologies or enhancements to our existing product and technologies; market acceptance of our products or our partners' products; design, manufacturing or software defects; changes in consumer preferences or demands; changes in industry standards and interfaces; unexpected loss of performance of our products or technologies when integrated into systems; as well as other factors detailed from time to time in the reports NVIDIA files with the Securities and Exchange Commission, or SEC, including its Form 10-K for the fiscal period ended January 26, 2014. Copies of reports filed with the SEC are posted on the company's website and are available from NVIDIA without charge. These forward-looking statements are not guarantees of future performance and speak only as of the date hereof, and, except as required by law, NVIDIA disclaims any obligation to update these forward-looking statements to reflect future events or circumstances.

© 2014 NVIDIA Corporation. All rights reserved. NVIDIA, the NVIDIA logo, Maxwell, NVLink and Tesla are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated. Features, pricing, availability and specifications are subject to change without notice.

includes_rightside_description


includes_rightside_login includes_rightside_register includes_rightside_cancel